3.3.55 \(\int \frac {x^2 \log (c (a+\frac {b}{x^3})^p)}{d+e x} \, dx\) [255]

3.3.55.1 Optimal result
3.3.55.2 Mathematica [C] (verified)
3.3.55.3 Rubi [A] (verified)
3.3.55.4 Maple [C] (warning: unable to verify)
3.3.55.5 Fricas [F]
3.3.55.6 Sympy [F(-1)]
3.3.55.7 Maxima [F]
3.3.55.8 Giac [F]
3.3.55.9 Mupad [F(-1)]

3.3.55.1 Optimal result

Integrand size = 23, antiderivative size = 666 \[ \int \frac {x^2 \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx=\frac {\sqrt {3} \sqrt [3]{b} d p \arctan \left (\frac {\sqrt [3]{b}-2 \sqrt [3]{a} x}{\sqrt {3} \sqrt [3]{b}}\right )}{\sqrt [3]{a} e^2}-\frac {\sqrt {3} b^{2/3} p \arctan \left (\frac {\sqrt [3]{b}-2 \sqrt [3]{a} x}{\sqrt {3} \sqrt [3]{b}}\right )}{2 a^{2/3} e}-\frac {d x \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{e^2}+\frac {x^2 \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{2 e}-\frac {\sqrt [3]{b} d p \log \left (\sqrt [3]{b}+\sqrt [3]{a} x\right )}{\sqrt [3]{a} e^2}-\frac {b^{2/3} p \log \left (\sqrt [3]{b}+\sqrt [3]{a} x\right )}{2 a^{2/3} e}+\frac {d^2 \log \left (c \left (a+\frac {b}{x^3}\right )^p\right ) \log (d+e x)}{e^3}+\frac {3 d^2 p \log \left (-\frac {e x}{d}\right ) \log (d+e x)}{e^3}-\frac {d^2 p \log \left (-\frac {e \left (\sqrt [3]{b}+\sqrt [3]{a} x\right )}{\sqrt [3]{a} d-\sqrt [3]{b} e}\right ) \log (d+e x)}{e^3}-\frac {d^2 p \log \left (-\frac {e \left ((-1)^{2/3} \sqrt [3]{b}+\sqrt [3]{a} x\right )}{\sqrt [3]{a} d-(-1)^{2/3} \sqrt [3]{b} e}\right ) \log (d+e x)}{e^3}-\frac {d^2 p \log \left (\frac {\sqrt [3]{-1} e \left (\sqrt [3]{b}+(-1)^{2/3} \sqrt [3]{a} x\right )}{\sqrt [3]{a} d+\sqrt [3]{-1} \sqrt [3]{b} e}\right ) \log (d+e x)}{e^3}+\frac {\sqrt [3]{b} d p \log \left (b^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3} x^2\right )}{2 \sqrt [3]{a} e^2}+\frac {b^{2/3} p \log \left (b^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3} x^2\right )}{4 a^{2/3} e}-\frac {d^2 p \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d-\sqrt [3]{b} e}\right )}{e^3}-\frac {d^2 p \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d+\sqrt [3]{-1} \sqrt [3]{b} e}\right )}{e^3}-\frac {d^2 p \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d-(-1)^{2/3} \sqrt [3]{b} e}\right )}{e^3}+\frac {3 d^2 p \operatorname {PolyLog}\left (2,1+\frac {e x}{d}\right )}{e^3} \]

output
-d*x*ln(c*(a+b/x^3)^p)/e^2+1/2*x^2*ln(c*(a+b/x^3)^p)/e-b^(1/3)*d*p*ln(b^(1 
/3)+a^(1/3)*x)/a^(1/3)/e^2-1/2*b^(2/3)*p*ln(b^(1/3)+a^(1/3)*x)/a^(2/3)/e+d 
^2*ln(c*(a+b/x^3)^p)*ln(e*x+d)/e^3+3*d^2*p*ln(-e*x/d)*ln(e*x+d)/e^3-d^2*p* 
ln(-e*(b^(1/3)+a^(1/3)*x)/(a^(1/3)*d-b^(1/3)*e))*ln(e*x+d)/e^3-d^2*p*ln(-e 
*((-1)^(2/3)*b^(1/3)+a^(1/3)*x)/(a^(1/3)*d-(-1)^(2/3)*b^(1/3)*e))*ln(e*x+d 
)/e^3-d^2*p*ln((-1)^(1/3)*e*(b^(1/3)+(-1)^(2/3)*a^(1/3)*x)/(a^(1/3)*d+(-1) 
^(1/3)*b^(1/3)*e))*ln(e*x+d)/e^3+1/2*b^(1/3)*d*p*ln(b^(2/3)-a^(1/3)*b^(1/3 
)*x+a^(2/3)*x^2)/a^(1/3)/e^2+1/4*b^(2/3)*p*ln(b^(2/3)-a^(1/3)*b^(1/3)*x+a^ 
(2/3)*x^2)/a^(2/3)/e-d^2*p*polylog(2,a^(1/3)*(e*x+d)/(a^(1/3)*d-b^(1/3)*e) 
)/e^3-d^2*p*polylog(2,a^(1/3)*(e*x+d)/(a^(1/3)*d+(-1)^(1/3)*b^(1/3)*e))/e^ 
3-d^2*p*polylog(2,a^(1/3)*(e*x+d)/(a^(1/3)*d-(-1)^(2/3)*b^(1/3)*e))/e^3+3* 
d^2*p*polylog(2,1+e*x/d)/e^3+b^(1/3)*d*p*arctan(1/3*(b^(1/3)-2*a^(1/3)*x)/ 
b^(1/3)*3^(1/2))*3^(1/2)/a^(1/3)/e^2-1/2*b^(2/3)*p*arctan(1/3*(b^(1/3)-2*a 
^(1/3)*x)/b^(1/3)*3^(1/2))*3^(1/2)/a^(2/3)/e
 
3.3.55.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.13 (sec) , antiderivative size = 483, normalized size of antiderivative = 0.73 \[ \int \frac {x^2 \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx=-\frac {3 b p \operatorname {Hypergeometric2F1}\left (\frac {1}{3},1,\frac {4}{3},-\frac {b}{a x^3}\right )}{2 a e x}+\frac {3 b d p \operatorname {Hypergeometric2F1}\left (\frac {2}{3},1,\frac {5}{3},-\frac {b}{a x^3}\right )}{2 a e^2 x^2}-\frac {d x \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{e^2}+\frac {x^2 \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{2 e}+\frac {d^2 \log \left (c \left (a+\frac {b}{x^3}\right )^p\right ) \log (d+e x)}{e^3}+\frac {3 d^2 p \log \left (-\frac {e x}{d}\right ) \log (d+e x)}{e^3}-\frac {d^2 p \log \left (-\frac {e \left (\sqrt [3]{b}+\sqrt [3]{a} x\right )}{\sqrt [3]{a} d-\sqrt [3]{b} e}\right ) \log (d+e x)}{e^3}-\frac {d^2 p \log \left (-\frac {(-1)^{2/3} e \left (\sqrt [3]{b}-\sqrt [3]{-1} \sqrt [3]{a} x\right )}{\sqrt [3]{a} d-(-1)^{2/3} \sqrt [3]{b} e}\right ) \log (d+e x)}{e^3}-\frac {d^2 p \log \left (\frac {\sqrt [3]{-1} e \left (\sqrt [3]{b}+(-1)^{2/3} \sqrt [3]{a} x\right )}{\sqrt [3]{a} d+\sqrt [3]{-1} \sqrt [3]{b} e}\right ) \log (d+e x)}{e^3}+\frac {3 d^2 p \operatorname {PolyLog}\left (2,\frac {d+e x}{d}\right )}{e^3}-\frac {d^2 p \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d-\sqrt [3]{b} e}\right )}{e^3}-\frac {d^2 p \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d+\sqrt [3]{-1} \sqrt [3]{b} e}\right )}{e^3}-\frac {d^2 p \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d-(-1)^{2/3} \sqrt [3]{b} e}\right )}{e^3} \]

input
Integrate[(x^2*Log[c*(a + b/x^3)^p])/(d + e*x),x]
 
output
(-3*b*p*Hypergeometric2F1[1/3, 1, 4/3, -(b/(a*x^3))])/(2*a*e*x) + (3*b*d*p 
*Hypergeometric2F1[2/3, 1, 5/3, -(b/(a*x^3))])/(2*a*e^2*x^2) - (d*x*Log[c* 
(a + b/x^3)^p])/e^2 + (x^2*Log[c*(a + b/x^3)^p])/(2*e) + (d^2*Log[c*(a + b 
/x^3)^p]*Log[d + e*x])/e^3 + (3*d^2*p*Log[-((e*x)/d)]*Log[d + e*x])/e^3 - 
(d^2*p*Log[-((e*(b^(1/3) + a^(1/3)*x))/(a^(1/3)*d - b^(1/3)*e))]*Log[d + e 
*x])/e^3 - (d^2*p*Log[-(((-1)^(2/3)*e*(b^(1/3) - (-1)^(1/3)*a^(1/3)*x))/(a 
^(1/3)*d - (-1)^(2/3)*b^(1/3)*e))]*Log[d + e*x])/e^3 - (d^2*p*Log[((-1)^(1 
/3)*e*(b^(1/3) + (-1)^(2/3)*a^(1/3)*x))/(a^(1/3)*d + (-1)^(1/3)*b^(1/3)*e) 
]*Log[d + e*x])/e^3 + (3*d^2*p*PolyLog[2, (d + e*x)/d])/e^3 - (d^2*p*PolyL 
og[2, (a^(1/3)*(d + e*x))/(a^(1/3)*d - b^(1/3)*e)])/e^3 - (d^2*p*PolyLog[2 
, (a^(1/3)*(d + e*x))/(a^(1/3)*d + (-1)^(1/3)*b^(1/3)*e)])/e^3 - (d^2*p*Po 
lyLog[2, (a^(1/3)*(d + e*x))/(a^(1/3)*d - (-1)^(2/3)*b^(1/3)*e)])/e^3
 
3.3.55.3 Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 666, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {2916, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx\)

\(\Big \downarrow \) 2916

\(\displaystyle \int \left (\frac {d^2 \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{e^2 (d+e x)}-\frac {d \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{e^2}+\frac {x \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{e}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\sqrt {3} b^{2/3} p \arctan \left (\frac {\sqrt [3]{b}-2 \sqrt [3]{a} x}{\sqrt {3} \sqrt [3]{b}}\right )}{2 a^{2/3} e}+\frac {\sqrt [3]{b} d p \log \left (a^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3}\right )}{2 \sqrt [3]{a} e^2}+\frac {b^{2/3} p \log \left (a^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3}\right )}{4 a^{2/3} e}-\frac {b^{2/3} p \log \left (\sqrt [3]{a} x+\sqrt [3]{b}\right )}{2 a^{2/3} e}+\frac {\sqrt {3} \sqrt [3]{b} d p \arctan \left (\frac {\sqrt [3]{b}-2 \sqrt [3]{a} x}{\sqrt {3} \sqrt [3]{b}}\right )}{\sqrt [3]{a} e^2}+\frac {d^2 \log (d+e x) \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{e^3}-\frac {d x \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{e^2}+\frac {x^2 \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{2 e}-\frac {d^2 p \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d-\sqrt [3]{b} e}\right )}{e^3}-\frac {d^2 p \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d+\sqrt [3]{-1} \sqrt [3]{b} e}\right )}{e^3}-\frac {d^2 p \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d-(-1)^{2/3} \sqrt [3]{b} e}\right )}{e^3}-\frac {d^2 p \log (d+e x) \log \left (-\frac {e \left (\sqrt [3]{a} x+\sqrt [3]{b}\right )}{\sqrt [3]{a} d-\sqrt [3]{b} e}\right )}{e^3}-\frac {d^2 p \log (d+e x) \log \left (-\frac {e \left (\sqrt [3]{a} x+(-1)^{2/3} \sqrt [3]{b}\right )}{\sqrt [3]{a} d-(-1)^{2/3} \sqrt [3]{b} e}\right )}{e^3}-\frac {d^2 p \log (d+e x) \log \left (\frac {\sqrt [3]{-1} e \left ((-1)^{2/3} \sqrt [3]{a} x+\sqrt [3]{b}\right )}{\sqrt [3]{a} d+\sqrt [3]{-1} \sqrt [3]{b} e}\right )}{e^3}-\frac {\sqrt [3]{b} d p \log \left (\sqrt [3]{a} x+\sqrt [3]{b}\right )}{\sqrt [3]{a} e^2}+\frac {3 d^2 p \operatorname {PolyLog}\left (2,\frac {e x}{d}+1\right )}{e^3}+\frac {3 d^2 p \log \left (-\frac {e x}{d}\right ) \log (d+e x)}{e^3}\)

input
Int[(x^2*Log[c*(a + b/x^3)^p])/(d + e*x),x]
 
output
(Sqrt[3]*b^(1/3)*d*p*ArcTan[(b^(1/3) - 2*a^(1/3)*x)/(Sqrt[3]*b^(1/3))])/(a 
^(1/3)*e^2) - (Sqrt[3]*b^(2/3)*p*ArcTan[(b^(1/3) - 2*a^(1/3)*x)/(Sqrt[3]*b 
^(1/3))])/(2*a^(2/3)*e) - (d*x*Log[c*(a + b/x^3)^p])/e^2 + (x^2*Log[c*(a + 
 b/x^3)^p])/(2*e) - (b^(1/3)*d*p*Log[b^(1/3) + a^(1/3)*x])/(a^(1/3)*e^2) - 
 (b^(2/3)*p*Log[b^(1/3) + a^(1/3)*x])/(2*a^(2/3)*e) + (d^2*Log[c*(a + b/x^ 
3)^p]*Log[d + e*x])/e^3 + (3*d^2*p*Log[-((e*x)/d)]*Log[d + e*x])/e^3 - (d^ 
2*p*Log[-((e*(b^(1/3) + a^(1/3)*x))/(a^(1/3)*d - b^(1/3)*e))]*Log[d + e*x] 
)/e^3 - (d^2*p*Log[-((e*((-1)^(2/3)*b^(1/3) + a^(1/3)*x))/(a^(1/3)*d - (-1 
)^(2/3)*b^(1/3)*e))]*Log[d + e*x])/e^3 - (d^2*p*Log[((-1)^(1/3)*e*(b^(1/3) 
 + (-1)^(2/3)*a^(1/3)*x))/(a^(1/3)*d + (-1)^(1/3)*b^(1/3)*e)]*Log[d + e*x] 
)/e^3 + (b^(1/3)*d*p*Log[b^(2/3) - a^(1/3)*b^(1/3)*x + a^(2/3)*x^2])/(2*a^ 
(1/3)*e^2) + (b^(2/3)*p*Log[b^(2/3) - a^(1/3)*b^(1/3)*x + a^(2/3)*x^2])/(4 
*a^(2/3)*e) - (d^2*p*PolyLog[2, (a^(1/3)*(d + e*x))/(a^(1/3)*d - b^(1/3)*e 
)])/e^3 - (d^2*p*PolyLog[2, (a^(1/3)*(d + e*x))/(a^(1/3)*d + (-1)^(1/3)*b^ 
(1/3)*e)])/e^3 - (d^2*p*PolyLog[2, (a^(1/3)*(d + e*x))/(a^(1/3)*d - (-1)^( 
2/3)*b^(1/3)*e)])/e^3 + (3*d^2*p*PolyLog[2, 1 + (e*x)/d])/e^3
 

3.3.55.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2916
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m 
_.)*((f_.) + (g_.)*(x_))^(r_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*Log 
[c*(d + e*x^n)^p])^q, x^m*(f + g*x)^r, x], x] /; FreeQ[{a, b, c, d, e, f, g 
, n, p, q}, x] && IntegerQ[m] && IntegerQ[r]
 
3.3.55.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.95 (sec) , antiderivative size = 269, normalized size of antiderivative = 0.40

method result size
parts \(\frac {x^{2} \ln \left (c \left (a +\frac {b}{x^{3}}\right )^{p}\right )}{2 e}-\frac {d x \ln \left (c \left (a +\frac {b}{x^{3}}\right )^{p}\right )}{e^{2}}+\frac {d^{2} \ln \left (c \left (a +\frac {b}{x^{3}}\right )^{p}\right ) \ln \left (e x +d \right )}{e^{3}}+3 p b \,e^{3} \left (\frac {d^{2} \left (\frac {\operatorname {dilog}\left (-\frac {e x}{d}\right )+\ln \left (e x +d \right ) \ln \left (-\frac {e x}{d}\right )}{b \,e^{3}}-\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (\textit {\_Z}^{3} a -3 \textit {\_Z}^{2} a d +3 \textit {\_Z} a \,d^{2}-a \,d^{3}+e^{3} b \right )}{\sum }\left (\ln \left (e x +d \right ) \ln \left (\frac {-e x +\textit {\_R1} -d}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-e x +\textit {\_R1} -d}{\textit {\_R1}}\right )\right )}{3 b \,e^{3}}\right )}{e^{3}}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{3} a -3 \textit {\_Z}^{2} a d +3 \textit {\_Z} a \,d^{2}-a \,d^{3}+e^{3} b \right )}{\sum }\frac {\left (-\textit {\_R} +3 d \right ) \ln \left (e x -\textit {\_R} +d \right )}{-\textit {\_R}^{2}+2 \textit {\_R} d -d^{2}}}{6 e^{3} a}\right )\) \(269\)

input
int(x^2*ln(c*(a+b/x^3)^p)/(e*x+d),x,method=_RETURNVERBOSE)
 
output
1/2*x^2*ln(c*(a+b/x^3)^p)/e-d*x*ln(c*(a+b/x^3)^p)/e^2+d^2*ln(c*(a+b/x^3)^p 
)*ln(e*x+d)/e^3+3*p*b*e^3*(1/e^3*d^2*(1/b/e^3*(dilog(-e*x/d)+ln(e*x+d)*ln( 
-e*x/d))-1/3/b/e^3*sum(ln(e*x+d)*ln((-e*x+_R1-d)/_R1)+dilog((-e*x+_R1-d)/_ 
R1),_R1=RootOf(_Z^3*a-3*_Z^2*a*d+3*_Z*a*d^2-a*d^3+b*e^3)))+1/6/e^3/a*sum(( 
-_R+3*d)/(-_R^2+2*_R*d-d^2)*ln(e*x-_R+d),_R=RootOf(_Z^3*a-3*_Z^2*a*d+3*_Z* 
a*d^2-a*d^3+b*e^3)))
 
3.3.55.5 Fricas [F]

\[ \int \frac {x^2 \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx=\int { \frac {x^{2} \log \left ({\left (a + \frac {b}{x^{3}}\right )}^{p} c\right )}{e x + d} \,d x } \]

input
integrate(x^2*log(c*(a+b/x^3)^p)/(e*x+d),x, algorithm="fricas")
 
output
integral(x^2*log(c*((a*x^3 + b)/x^3)^p)/(e*x + d), x)
 
3.3.55.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^2 \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx=\text {Timed out} \]

input
integrate(x**2*ln(c*(a+b/x**3)**p)/(e*x+d),x)
 
output
Timed out
 
3.3.55.7 Maxima [F]

\[ \int \frac {x^2 \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx=\int { \frac {x^{2} \log \left ({\left (a + \frac {b}{x^{3}}\right )}^{p} c\right )}{e x + d} \,d x } \]

input
integrate(x^2*log(c*(a+b/x^3)^p)/(e*x+d),x, algorithm="maxima")
 
output
integrate(x^2*log((a + b/x^3)^p*c)/(e*x + d), x)
 
3.3.55.8 Giac [F]

\[ \int \frac {x^2 \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx=\int { \frac {x^{2} \log \left ({\left (a + \frac {b}{x^{3}}\right )}^{p} c\right )}{e x + d} \,d x } \]

input
integrate(x^2*log(c*(a+b/x^3)^p)/(e*x+d),x, algorithm="giac")
 
output
integrate(x^2*log((a + b/x^3)^p*c)/(e*x + d), x)
 
3.3.55.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx=\int \frac {x^2\,\ln \left (c\,{\left (a+\frac {b}{x^3}\right )}^p\right )}{d+e\,x} \,d x \]

input
int((x^2*log(c*(a + b/x^3)^p))/(d + e*x),x)
 
output
int((x^2*log(c*(a + b/x^3)^p))/(d + e*x), x)